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Data analytics and machine learning have become vital applications in the world of sports,

providing glimpses of statistically probable, mathematically formulated future states while

helping teams and individual athletes make smarter decisions. The sport of tennis, featuring

a relatively low number of moving parts, a bevy of readily available data and a global

interest, is ripe for advanced forecasting analysis. In the following, the method of adaptive

least squares is leveraged in conjunction with Kalman filtering to create time-variant match

statistics for professional tennis players. Once the adaptive model is constructed, the sigmoid

function is utilized to transform forecasted delta set values into forecasted probabilities of

winning for any given matchup. The most successful model constructed from the web-

scraped pool of data is continuously improving and correctly forecasts tennis match outcomes

63.54% of the time, exceeding the prediction accuracy if outcomes were chosen solely based

on professional rankings.
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CHAPTER 1

Introduction

Having the ability to forecast future events, sentiments or outcomes is notoriously valuable

in nearly all facets of daily life. The implementation of said forecasting can happen on any

scale, whether it be on an individual level, a global level, or beyond. The process is fre-

quently leveraged to peer into a possible future state of some discipline such as meteorology,

economics, consumer activity, sports, or even climatology. Regardless of the slice of life

in which forecasting may be implemented, the process is completely reliant upon historical

data, underlying reasoning, and logic. Looking into the future through a data-bolstered lens

is powerful and can yield shockingly accurate results, but the degree of accuracy is at the

mercy of the quality of the data.

I have adored sports my entire life, and while I grew up with tennis serving as my

primary sport, my love of this specific sport did not blossom until years later. In recent

years past I have attended Women’s Tennis Association (WTA) events in San Jose, CA,

Association of Tennis Professionals (ATP) Challenger events in Newport Beach, CA, and

larger ATP/WTA tournaments in Indian Wells, CA and Flushing Meadows, NY. Figure 1.1

below shows a snapshot from the US Open, a Grand Slam tournament played in New York

each fall that I was fortunate enough to attend in 2023.
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Figure 1.1: Louis Armstrong Stadium, US Open 2023

With the explosion of data science, machine learning and analytics within the world of

sports and sports betting, an opportunity was identified to bridge one of my biggest hobbies

with some of my deepest educational interests. Sports such as American football, basketball

and baseball have already become heavily reliant upon analytics, and for good reason. While

there will always be some elements of stochasticity in sports, the incredibly vast amount of

data that can be aggregated can lead to the discovery of underlying patterns that assist

in forecasting the next play, the next shot, or even a competition’s eventual outcome. If a

sport like football, featuring twenty-two moving parts on the field, can leverage principles

of data science for analytical purposes such as forecasting, narrowing down that number of

confounding variables to two within a sport like tennis theoretically has a good chance to

yield even more meaningful analytical patterns and accurate predictive models.

The following project will leverage the method of Kalman filtering to transform time-
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variant data into an appropriate input to an adaptive least square regression model which

ultimately outputs forecasted delta set values. “Delta set” refers to the change in sets in any

given match for each opposing player, given the outcome. If player A wins a best-of-3 set

match in straight sets, player A’s corresponding delta set value is +2. On the other hand, the

delta set value for player A’s opponent is -2. This forecasted value is subsequently mapped

to a probability of winning, which allows for a forecasted match winner to be identified.

While it is powerful to be equipped with forecasts of match outcomes, the resulting logistic

cost and forecast accuracies with respect to the true match outcomes must be measured to

quantify each model’s performance.

Tennis is a grueling, physical sport, yet the mental aspect of the game is equally as vital

to the outcome, if not more. Just when it appears that a player is clearly superior to his/her

opponent and is going to win the match, it is not uncommon for the mental nature of the

sport to creep in and overwhelm the level of skill. The unpredictability of tennis helps to give

the sport its awe-inspiring feel. Take the recently-completed ATP 250 Los Cabos event in

February 2024 as an example: number eight seed Jordan Thompson of Australia found him-

self serving down 0-6, 1-4, 15-40 (5 points away from defeat) to unseeded American teenager

Alex Michelsen in the quarterfinals. Any live match forecasting model would overwhelmingly

favor Michelsen to close the match out, and the odds of Thompson winning the tournament

at that juncture were basically zero. Thompson ended up beating Michelsen, taking out the

top-seeded German Alexander Zverev in the semifinals, and beating four-seed Norwegian

Casped Ruud in the finals. What changed for Thompson all of a sudden? How could any

model forecast such a turn of events?

For all of the historical outcomes and statistics available, the computing power that our

machines harness and even the raw knowledge of the game that we collectively possess,

match outcomes can not be forecasted with 100% accuracy, but what fun would the sport be

if that were possible? While it is unclear how best to capture the mental portion of tennis, or

the levels of momentum which appear to switch directions on a dime, this project strives to
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construct algorithms which process every collected piece of statistical information to forecast

match outcomes as accurately as possible, as well as reveal what statistical variables appear

to be the most influential.
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CHAPTER 2

Methodology

2.1 Overview

A considerable percentage of this project involved web scraping and subsequent data prepa-

ration, with the output of those processes serving as the input to the ultimate adaptive

least squares regression model and logistic mapping. A reliable data source needed to be

unearthed, one that allowed for the scores and statistics of every professional tennis match to

be scraped on a daily basis. Tournament matches from the ATP, WTA, and ATP Challenger

Tour were included. The consistent frequency of data scraping was primarily due to ten-

nis matches being played every day, meaning that new information from freshly-completed

matches was available and ready to be leveraged. Information of interest was not solely

found within one website; multiple data sources underwent daily scraping and the informa-

tion was retained to ensure that it would remain available at all times, regardless of its public

availability.

Three unique sets of model features were chosen to ultimately construct three different

models. One model included every feature that had been scraped, the next model included

only a few vital features to reduce complexity and the third model included a set of features

chosen at the author’s discretion. After extensive preparation, the data was filtered so that

average, time-variant values of each feature were calculated over time for each individual

player and the respective opponents. This process quadrupled the amount of data present; a

matrix was constructed consisting of time-variant average values for four metrics pertaining

to player and player opponent. This matrix was used in conjunction with other variables that
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were known before the match started, known as a priori variables, and fed into a Kalman

filter and adaptive least squares model. Once the forecasted values for the delta set variable

were calculated, a logistic filter was initialized and the forecasted values were mapped to

probabilities of winning. A flowchart displaying each step of the model-creation process is

shown below in figure 2.1. Each method will be explored in more depth in the following

sections.

Figure 2.1: Project Process Overview

2.2 Data Collection

2.2.1 Rotowire

Given the parameters for the desired data source outlined above, Rotowire [Rot] fit the bill

and became the predominant means of data acquisition. Rotowire primarily serves as a

fantasy sports and sports betting website, covering numerous professional leagues (including

some college sports). Game scores and individual player stats are available along with news,

articles, and a deep reservoir of additional content. Narrowing the focus to the sport of ten-

nis, match scores and corresponding player statistics from ATP, WTA and ATP Challenger
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Tour 1 matches are featured on the site.

The statistics corresponding to each match were extracted from different Rotowire web-

pages by digging into the HTML (HyperText Markup Language) code of each webpage and

pulling out elements of interest, whether they be text, numbers, or even full tables. A note-

worthy downside of choosing Rotowire as a data source is that the tennis match scores and

statistics featured on the website are overwritten after seven days, so for any given day there

only exists one full week of information to scrape. To ensure that all data was gathered,

match scraping was (and will continue to be) performed on a daily basis. The Rotowire

data-scraping process was performed using the R programming language, with the XML

package serving as the primary HTML-parsing tool. Each webpage housing the statistics

for some unique match had its respective HTML source code analyzed, and every element

of interest was extracted and saved into an R dataframe object.

2.2.2 ATP & WTA Rankings

As comprehensive a data source as Rotowire appeared to be, there remained to be variables

of interest that were not present on the website; therefore, additional data sources needed

to be unearthed. While the “player rank” variable was indeed available on most of the

match statistic webpages on Rotowire, the number was frequently missing, especially for the

smaller WTA tournaments and ATP Challenger tournaments 2. To combat this infrequency,

a script was written in the python programming language that scrapes the ATP live rank-

ings [ATPa] and the WTA live rankings [WTA] from the associations’ respective websites.

The BeautifulSoup4 module was leveraged to scrape the ATP website. Scraping the WTA

1There exists an equivalent to the Challenger Tour featured in women’s tennis (WTA 125 tournaments),
yet Rotowire does not feature match statistics for these tournaments. WTA 125 tournaments are far less
frequent than ATP Challenger tournaments, as there were 196 Challenger tournaments in 2023 and just 31
WTA 125 tournaments. This infrequency paired with the ”lower” level may play into the data exclusion.

2I wanted the rankings to be as accurate as possible; if a player won his/her previous match, that result
is recorded in the “live” rankings even though the “official” rankings would not have reflected that match
result quite yet, since those are updated weekly.
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website proved to be slightly more challenging. A PDF version of the WTA ranking data

was unearthed within the HTML code of the website, and the contents of the PDF were

scraped and ordered into a dataframe. This unique process was performed in python by

leveraging the BeautifulSoup4, PyPDF2, and tabula modules. These scripts were (and once

again, will continue to be) executed on a daily basis to capture the most updated live ranking

for each player. This ensures that all units of observation include an accurate-to-the-day live

rank at the time of each match. Along with live rank, the age of each player was scraped

from the ATP website and the nationality of each player was scraped from the WTA website3.

The ATP website underwent a complete overhaul at one point while this project was ac-

tive. With a completely novel HTML structure supporting the site, the elements of interest

on the rankings webpage were no longer found in the same exact location, nor were they

labeled the same within the code. The python script that scraped ranking information was

rewritten to gel with the new HTML webpage structure.

2.2.3 Tennis Abstract

The elo rating system was originally designed for chess, yet its application has expanded

greatly over time. For a zero-sum game such as tennis where a win for one player and a

loss for another happen in tandem, elo ratings are helpful representations of each individual

player’s strength. Elo ratings for a player and any changes are contingent on the elo ratings

of the opponents. Beating a player with a low elo rating will not result in as large of a rating

increase as beating a high elo player. When gauging player performance, it is natural to

consider historical data, that is, how well the player has performed in the past. Another

worthy consideration involves the breadth of that historical data. It is certainly easier to

estimate how good a player is when they have played a lot of matches. Elo ratings experience

greater alterations when a player has not played many matches in the past, as the rating

3Age and nationality didn’t play a part in this project’s models, but they were easily available to scrape
and may play a part in future modeling.
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confidence is not as high.

Elo ratings for both male and female tennis players were scraped from the Tennis Abstract

4[Sac] website using python. On this site ratings exist for all professional players that have

played at least ten professional tour matches in the previous fifty-two weeks. The elo ratings

are not inherently court surface-specific, but Tennis Abstract does provide court-specific

ratings as well as blended ratings that are combinations of the two aforementioned webpage

offerings. Both the general ratings and the court-specific ratings were scraped for potential

future model inclusion.

2.2.4 Tournament Lookup Table

While the outcome of a tennis match and the resulting player statistics are unknown prior

to the match actually being played, there is some information that is indeed known ahead

of time. There were multiple a priori variables pertaining to each tennis match that were of

interest: the maximum number of sets that the match could consist of (bestOf), the number

of games featured in each set (gamesPerSet), the gender of the players, the court surface that

the match would be played on and the level of the tournament. While all women’s tennis

matches and the majority of men’s matches are played as best-of-three sets, men’s Grand

Slam tournaments (Australian Open, French Open, Wimbledon, and US Open) are played as

best-of-five sets. In terms of scoring within each set, nearly all professional tournament sets

are scored as the first player to six games, win by two, with a seven-point tiebreaker played

at 6-6. The one tournament during the calendar year that does not abide by these rules is

the Next Gen ATP Finals, which is played each November. This tournament incorporates

rule tweaks basically as a trial run for potential future application to the entire ATP Tour.

The scoring system is a best-of-five set format, yet each set is first to just four games rather

than six, with a tie-breaker at 3-3. The inclusion of these matches in the model requires the

inclusion of this variable.

4If you enjoy following tennis, there is a vast collection of compelling content over on the Tennis Abstract
website.
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Throughout the calendar year, professional matches are played on multiple different sur-

faces: hard courts, clay courts, grass courts and even carpet courts. A dummy variable was

created for surface to capture these differences. Finally, each tournament is not exactly equal

in terms of prize money and allocated points. The winner of a Grand Slam, for example,

receives 2,000 ranking points while the winner of a Challenger 75 tournament receives 75

points. The hope for the inclusion of tournament level as a model feature was to encapsulate

the typical level of competition at which each player competes, as the players who participate

in higher-level tournaments face stronger opponents.

Each of the a priori variables described above (bestOf, gamesPerSet, gender, surface, and

tournament level) were manually documented directly from the ATP and WTA websites

and inserted into a lookup table to be joined later with the existing data. Since there is

no absolute guarantee that the listed tournament name from the Rotowire match data will

exactly match the tournament name from the ATP website, the lookup table updating is

performed every day after the Rotowire scraping is completed.

2.3 Feature Engineering

2.3.1 Miscellaneous Transformations

At this juncture, data had been identified and scraped from all sources of interest. The

majority was formatted within the scraping scripts, which performed data transformation

(letter casing, character replacing, etc.), yet a few variables needed to undergo further engi-

neering. A few of the more noteworthy alterations are described below.

Tiebreaks and supertiebreaks are prevalent in professional matches, as it is often difficult

to break a player’s serve5. Scraping scores from Rotowire included both the set’s game score

5Two of the best servers of all time, Ivo Karlovic and John Isner, held their service games 92% of the
time over their careers. [Ivo] [Isn]
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and the tiebreaker score in tiebreaker sets. The exact tiebreaker score was not deemed neces-

sary to capture, so some programming logic was implemented to strictly notate the number

of games won in tiebreak/supertiebreak sets. For example, a set that ended in a tiebreaker

would be displayed in the source HTML as 7 games won for one player and 6x 6 for the other.

This correction allowed for the creation of a new metric, total games won, which in turn led

to the delta games feature.

Information of interest on Rotowire was often represented by a tuple of conversions and

attempts, and it was scraped as such. Rather than include these raw numbers of conver-

sions and attempts in a model, percentages were calculated and stored as decimals. Even

though match durations are fixed to a degree (there is a preset maximum number of sets),

the number of points in a match greatly varies, therefore metrics such as the number of first

serves converted/attempted also greatly vary. Those metrics ultimately don’t matter in this

context, but the percentage of first serves converted does matter.

Another vital step in the data preparation process included manipulating the structure

of the match statistic dataframe. The information scraped from Rotowire was structured

so that the unit of observation for the dataframe was date match, meaning that each row

of the dataframe corresponded to a certain match on a certain date, encapsulating match

statistics for two separate players. A function was written to split each row into two so

that the unit of observation would instead be player match, where each row corresponds to

an individual player on some date. This process was necessary because indexing is a vital

component of forecasting, and adjusting the dataframe’s unit of observation to player match

made indexing far simpler.

6If player A wins a tiebreaker 7-4 over player B, the scraped numbers would yield 7 for player A and 64
for player B. This obviously needed to be corrected in all instances.
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2.3.2 Dataframe Joins

Once any necessary transformations were applied to the data, each source’s respective scrap-

ing yield was joined together to form one comprehensive dataframe. Data was scraped or

notated from four sources and the subsequent step involved consolidating it. Figure 2.2

below displays noteworthy variables from each dataframe, as well as any inter-dataframe

relationships that were utilized for joining purposes.

Figure 2.2: Dataframe Joining Diagram

The dataframe consisting of the match statistics from Rotowire contained the bulk of the

information, and each of the other information dataframes were joined with it. As figure

2.2 reveals, the elo rating data, ATP ranking data, and the WTA ranking data were all

joined with the Rotowire match data on “player name.” The tournament lookup table and

the match data were joined on both “year” and “tournament name.” It is infrequent but

possible for a tournament’s level to change year over year; therefore, including “year” in the

join ensured that any potential level changes would be captured, as the lookup table was

manually updated to include every tournament each year. These joins were only performed

on the newly-scraped matches each day, as it would not make sense to pair current player

rankings or elo ratings with matches from the past. After these joins were performed on
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only the new matches, the result was bound with the dataframe consisting of the rest of the

historical match data.

2.3.3 Variable Mapping

Any type of head-to-head, winner-take-all competition will oftentimes utilize a draw format.

In this format, individuals or teams compete against some opponent and the winner moves

onto the next round. This process continues and the number of remaining competitors gets

cut in half each round until a champion is crowned7. Professional tennis tournaments operate

in such a manner, and each tournament has a preset number of spots for competitors; for

example, it was known ahead of time that the 2024 Australian Open would have 128 main

draw spots available. Tennis is unique in that there is also a qualifying draw that is played

out prior to the main draw matches commencing. A select few players who perform well in

qualifying will be awarded a spot in the main draw. Imagine that every professional player

were healthy and a Grand Slam tournament was coming up. Grand Slam tournaments have

128 main draw spots to fill, but they also award 16 qualifying spots (and 8 wild cards8).

In this theoretical situation, the top 104 ranked players will directly enter the main draw

alongside 8 wild cards. The qualifying draw would feature the next 119 players in the

rankings, as well as 9 qualifying wild cards. Players need to win 3 straight matches to be

awarded one of the final 16 main draw spots [Had] 9.

Any qualification matches scraped from Rotowire were labeled as such in the tournament

lookup table, either as “qualification” or “challenger qualification.” Most professional tour-

naments are categorized by way of a numeric descriptor, such as “Challenger 125” or “WTA

7For Grand Slam tournaments which feature 128 players in the main draw, the eventual champion needs
to win 7 main draw matches.

8Players who receive a wild card into a tournament are chosen at the discretion of the tournament
organizers, but they are typically awarded to local players, up-and-coming young players, or highly ranked
players who suffered an injury in the past and fell in the rankings. To provide an example, each year the
winner of the Boys’ 18s National Championship (played in Kalamazoo, MI) receives an automatic wildcard
into the US Open main draw.

9As improbable as it was, Emma Raducanu won the 2021 US Open after winning 3 straight qualifying
matches to receive a main draw spot, and then winning 7 main draw matches to win the tournament.
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500,” which specifies the number of ATP or WTA points that are awarded to the tourna-

ment’s winner. Higher level tournaments award a higher number of points and more prize

money, both of which attract higher level players. For this reason, higher level tournaments

are mapped to higher numerical values. The majority of the tournament levels already in-

clude a numeric representation, but the “qualification” and “challenger qualification” labels

needed to be mapped to numeric values. Table 2.1 below displays the manner in which the

levels were mapped, which was necessary prior to the variable’s inclusion in the regression

models.

Initial Tournament Level Mapped Value

ATP Challenger Qualification 0.5

ATP Challenger 50 0.5

ATP Challenger 75 0.75

ATP Challenger 80 0.8

ATP Challenger 90 0.9

ATP Challenger 100 1.0

ATP Challenger 125 1.25

ATP Challenger 175 1.75

ATP/WTA Qualification 2.5

ATP/WTA 250 2.5

ATP/WTA 500 5

ATP/WTA 1000 10

ATP/WTA Finals 15

Grand Slam 20

Table 2.1: Tournament Level Mapping

The pattern that may be deduced in the table above is not by accident. The mapping

process utilized the number of points each tournament awarded to its respective champion
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and simply divided it by 100. The ATP/WTA Finals award each winner 1500 points10 so

that level was mapped accordingly to 15. Any matches that were labeled as “challenger qual-

ification” were given an equal value to that of the lowest-level Challenger event: Challenger

50 tournaments. ATP/WTA qualification matches were marked equivalent to ATP/WTA

250 events, once again the lowest ATP/WTA level events. Since larger tournaments have

a higher number of main draw spots than smaller tournaments11 and the rankings of the

players who enter smaller tournaments aren’t as sequentially constant12, the caliber of each

ATP/WTA qualification match was deemed equal regardless of the tournament.

In the ultimate model, tournament level served as both an a priori variable, because the

tournament level is known prior to the match occuring, as well as an input to the adaptive

least squares model. The latter inclusion provided filtered player ranks and opponent ranks,

which provided insight into the filtered average ranking of the opponents that each player

faces. Further detailed explanation in regard to variable selection will be provided in a later

section.

2.4 Final Variable Pool

The process of scraping information from the numerous sources outlined above yielded a

slew of variables, with the a priori variables shown below in table 2.2.

10The ATP and WTA Finals are unique in that the top 8 men and the top 8 women play round-robin
style tournaments. The scoring is such that an undefeated champion will receive 1500 points[ATPb].

11Grand Slams have 128 main draw spots up for grabs, whereas 1000/500/250-level tournaments typically
have 24-32 spots.

12Grand Slams can count on all of the highest ranked players to enter unless injury strikes, but that’s not
the case for other tournaments. When main draw entry rankings shift lower, qualifying player rankings also
shift lower.
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A Priori Variable Description

Gender Dummy variable, denotes male or female match

Surface Type
Dummy variable, denotes whether match was played on

hard, clay, grass, or carpet surface

Best Of Maximum number of sets the match could go

Games Per Set Number of games to which each set is played in the match

Player Rank Live rank of the player

Elo Rating Current overall elo rating of the player (not surface specific)

Tournament Level Tournament level of the match

Table 2.2: A Priori Variables

In addition to the variables shown above, a posteriori variables were also included and

are listed below in table 2.3.
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A Posteriori Variable Description

1st Serve Percentage (%) Percentage of successful first serves

1st Serve Win % Percentage of first serve points won

2nd Serve Win % Percentage of second serve points won

Service Points Won % Percentage of all service points won

Service Games Won % Percentage of service games won

Aces Number of aces (unreturned serves)

1st Serve Return Points Won % Percentage of first serve return points won

2nd Serve Return Points Won % Percentage of second serve return points won

Return Points Won % Percentage of all return points won

Return Games Won % Percentage of return games won

Break Point Conversion % Percentage of break points converted (as returner)

Break Point Save % Percentage of break points saved (as server)

Winners Number of winners (service aces included)

Unforced Errors Number of unforced errors

Total Points Won % Percentage of total points won

Total Games Won Number of games won

Total Sets Won Number of sets won

Match Won Binary variable (won: 1, lost: 0)

Delta Game Difference in total games with respect to opponent

Delta Set Difference in total sets with respect to opponent

Table 2.3: A Posteriori Variables

The descriptions of the variables above are (for the most part) self-explanatory. They

are considered to be a posteriori as they are only known after a given match has ended. The

information is not known pre-match. Further down the project’s road, time-variant averages

of the a posteriori variables are calculated and paired with the a priori variables to yield

the design matrix, X. This design matrix is multiplied with a calculated vector of slopes, β̂,

17



yielding a forecast for the outcome variable, delta set.

The data transformation process yielded a design matrix comprised of an ever-changing

number of rows with seventy features. After roughly seventeen full months of match scraping

(Nov 2022–Mar 2024), the constructed matrix holds over forty-two thousand unique player

matches. This number will continue to rise as professional matches continue to be played

and the corrresponding match data accumulates.

2.5 Data Management

As previously mentioned, the information of interest on Rotowire was only available for a

limited number of days. In the event of some computer memory setback, each webpage

of match statistics was saved to disk as an HTML file. This ensured that the data source

remained accessible in case questions of validity arose, or if the constructed dataframe was

mistakenly altered. Another implementation of sound data management involved the use

of Amazon Web Services Simple Storage Service (AWS S3) for cloud storage. The tens of

thousands of match stat webpage files, along with the numerous programming script files

and data files, were all uploaded regularly to an AWS S3 bucket to further avoid a potential

loss of information and model results.

2.6 Adaptive Least Squares & Kalman Filtering

Once properly formatted and transformed, the data could be utilized within the model-

creation and improvement process. The explanation of this project’s modeling methods

centers around an adapted version of the multiple linear regression model, known as adap-

tive least squares, which incorporates a concept called Kalman filtering. These methods

are commonly applied to time series data, and are described in further detail below. An

explanation of the least squares linear regression method is described first to set the table

for the implemented ideas of adaptive least squares and Kalman filtering.
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2.6.1 Least Squares Regression Theory

Simple linear regression involves some numerical output variable, yi, and some predictor,

xi. There is also a “slope” parameter paired with xi, represented by βi. An error term,

or residual, ϵi and an intercept term β0 also exist. Combining each of the above elements

together into a formula yields the following, where i = 1, ..., n, with n representing the

number of model predictors, or features.

yi = β0 + xiβi + ϵi (2.1)

The equation above may also be written in matrix form, which is the exact same equation

written in a more concise form. For multiple linear regression which involves numerous

predictor variables, the following matrix form is preferred:

Y = Xβ + ϵ (2.2)

Here, Y and ϵ are n x 1 column vectors. The design matrix, X, is an n x k matrix, where k is

equal the number of predictors (including the intercept). β must therefore be a k x 1 column

vector so that the matrix multiplication works out. To figure out the estimated values for

the vector of slopes, β̂, for multiple linear regression, the loss function is introduced. The

loss function is utilized to minimize β̂ by finding a global minimum via setting the derivative

of the loss function equal to zero.

As was defined above, β̂ serves as an estimate of β. The estimate for the forecasted

values of Y (Ŷ ) is therefore defined as such:

Ŷ = Xβ̂ (2.3)

The corresponding vector of residuals can be written as follows:

ϵ = Y − Ŷ (2.4)

ϵ = Y −Xβ̂ (2.5)
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The method of least squares involves minimizing the sum of the squared error, which is

represented as ϵTϵ. This can be rewritten as such:

min(ϵTϵ) = min
(
(Y −Xβ̂)T (Y −Xβ̂)

)
(2.6)

To minimize the right side of equation 2.6 above, the derivative is taken with respect to

β̂ and set equal to zero:
d

dβ̂

(
(Y −Xβ̂)T (Y −Xβ̂)

)
= 0 (2.7)

Performing some linear algebra yields the following equation:

β̂ = (XTX)−1(XTY ) (2.8)

Equation 2.8 above reveals the method of calculating β̂ in multiple linear regression. In

this instance, β̂ does not change; it is time-invariant13. The process of calculating β̂ also

involves a static, time-invariant design matrix, X. As the time-invariant nature depicts,

the values for β̂ are calculated using all of the data from the design matrix without index

consideration.

The equations and their ultimate result shown above are incredibly powerful, but disci-

plines such as sports forecasting or financial market forecasting require a slightly different

approach. As this project exists to forecast the outcomes of professional tennis matches, the

constructed models implement additional wrinkles stemming from the method of adaptive

least squares and the Kalman filter. The underlying mathematics is comparable, but there

are some major differences that will be introduced below.

2.6.2 Adaptive Least Squares and Kalman Filtering Theory

From a bird’s eye view, one can imagine that a vital component of sports forecasting must

be time. The context that time provides matters greatly: past performance will obviously

13To provide a preview for the paragraphs to come, another way to say “time-invariant” is “index-
invariant.”
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be taken into consideration when forecasting, yet should more recent matches influence the

forecast to some higher degree? Encapsulating this type of variable uncovers a glimpse

into historical performance on a deeper level, as signal-to-noise ratios can be leveraged to

“weight” past matches differently based on how deep in the past they were played (more on

this later). Since tennis matches are completed nearly every day, the new metrics from said

matches will ultimately cause the values within β̂ to undergo slight adjustments14. Perform-

ing these calculations on a daily basis over such a large dataset is inefficient and can get

computationally expensive. Therein lies one of the extremely valuable extensions of adaptive

least squares: time-variant slopes.

Not only are the values for β̂ updated whenever new tennis match statistics are pro-

cessed, their calculations are solely dependent on the previous day’s best approximation for

the values of β̂. This method is valid because time-variant modifications are also made to the

design matrix when making delta set forecasts rather than simply calculating slopes from

a static matrix. This is where the Kalman filter is applied. Just as the values for β̂ are

calculated in a time-variant manner, the contents of the design matrix are also time-variant.

The Kalman filter computes a rolling average15 of each metric for each individual player,

introducing the notion of state. At any given state, there exists some measure of all inputs

that were applied to the filter up to that state [Hay96]. Any given delta set forecast is

constructed from far more than just a β̂ vector and a static design matrix.

Consider a tennis match in which Jannik Sinner is opposing Carlos Alcaraz16. The β̂

vector resulting from the adaptive least squares regression model will have been updated

based on information stretching all the way up to time t− 1. This same vector of slopes will

be applied to every match on the following day, time t, to generate delta set forecasts. If

14Adjustments are slight because scraping information from ±50 new matches one day won’t drastically
affect the already-calculated β̂ from the tens of thousands of matches already scraped from the past.

15Moving forward, “rolling average” is synonymous with “filtered.”

16At the time of writing, Sinner sits at #4 in the world and Alcaraz at #2.
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the design matrix were static, the resulting output would only encapsulate data from each

player’s one previous match. Instead, rolling averages for every metric (see metrics in table

2.3 are calculated for Jannik and rolling averages are calculated for Carlos based on all of

their respective past matches. The model leverages indices of the constructed dataframe to

seek out historical matches for each player and features the filtered values of each metric for

each respective player within Xi. Therefore even though the β̂ values are player-agnostic,

the design matrix X, full of filtered metrics for each individual player, is most definitely not.

Not only are rolling averages of the metrics calculated, but averages for metrics given up,

metrics of the opponent, and metrics that the opponent have given up are generated and

paired together in Xi. The number of features that the model consists of quadruples17 with

the inclusion of these rolling metrics.

Returning to the specific Sinner vs. Alcaraz example, the process of forecasting the

winner of a match between Jannik and Carlos would have the example information below

at its disposal to make as accurate a forecast as possible. Table 2.4 concisely displays how

each of the metrics is “expanded” into four different components by listing what variables

come from the aces statistic. The actual model includes filtered values for every a priori and

a posteriori variable, as well as the same a priori variables in an unfiltered manner. This

allowed the model to leverage current player rankings at the time of the match in addition to

filtered averages for player ranking, meaning that in the above example, the filtered rankings

for Jannik revealed a rolling average of his ranking, Alcaraz’s ranking, the average rank of

his historical opponents, and that of Alcaraz’s opponents. Quite a bit of information was

captured through the filtering process beyond raw variable inclusion. In table 2.4 below,

filtered a posteriori values are displayed in bold, while a priori variables are in plain text18.

17Each feature is transformed from being a standalone value to being represented in four separate ways:
player scored, opponent scored, player allowed and opponent allowed. For example, instead of including a
raw number of aces for a player, the model calculates and incorporates the average number of aces the player
hits, average aces the opponent hits, plus the average number of aces the player allows and the average aces
the opponent allows.

18As a reminder, the (plain text) a priori variables are included both as filtered values and as unfiltered
values.

22



Jannik Sinner Carlos Alcaraz

Player Rank 4 2

Elo Rating 2.32 2.29

Surface Type hard hard

BestOf 5 5

GamesPerSet 6 6

Gender 1 1

Tournament Level 20 20

Player AVG Aces 10.3 9.9

Opponent AVG Aces 9.9 10.3

Player AVG Aces

Yielded
5.2 4.5

Opponent AVG Aces

Yielded
4.5 5.2

Table 2.4: Abbreviated Set of Model Features

It is necessary to stress once again that table 2.4 is an abbreviated display showing how

each metric gets “expanded” into four through the filtering process. A model containing

twenty features will ultimately contain eighty features after filtering. This project featured

a model that included filtered values for every variable in tables 2.2 and 2.3, as well as

unfiltered variables in table 2.2 (bestOf, gamesPerSet, player rank, tournament level, and

elo rating). It is apparent that some of these filtered pieces of information represent the

same metric if Sinner and Alcaraz are competing against one another: the filtered number

of aces that Sinner hits are the same as the filtered number of aces of Alcaraz’s opponent.

Similarly, the filtered number of aces that Sinner gives up is the same as the filtered number

of aces that Alcaraz’s opopnent gives up, and so on. Every metric for Sinner will reside as

a unit of observation in one row, and every metric for Alcaraz will reside as another unit of

observation in a row directly beneath. This process was carried out for every match that was
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scraped from the aforementioned data sources, yielding a sizeable matrix of filtered features

that was utilized to formulate accurate delta set forecasts at any given point in time.

As the design matrix is comprised of rolling averages, slopes for time t are calculated from

the slopes for time t− 1, those for t− 1 are calculated from t− 2, and so on. The Kalman

filter allows for the calculation of a match forecast at any point in time, leveraging only the

past and current history of the data at any point of interest [McC05]. The values for β̂ are

not re-calculated over the entire dataset every time new match metrics are available, rather

the slight effects of the new information on the previous information are concisely captured.

This process is incredibly efficient and embraces the consideration of time in forecasting as

best it can. The underlying math behind adaptive least squares [Zes09] is shown below:

β̂t−1 = L̂xx

−1

t−1 l̂xy t−1 (2.9)

L̂xx t = L̂xx t−1 + Kt ·
(
xT
t xt − L̂xx t−1

)
(2.10)

l̂xy t = l̂xy t−1 + Kt ·
(
xT
t yt − l̂xy t−1

)
(2.11)

If you squint hard enough you’ll see that the structure of adaptive least squares doesn’t

stray too terribly far from the “vanilla” version of least squares, but there are some additional

properties, namely the consideration of time and the Kalman gain (Kt). The covariance ob-

jects (L̂xx t & l̂xy t) calculated for today, time t, are calculated using information aggregated

through time t, meaning that these calculations leverage time t results. For forecasting pur-

poses, it may be helpful to consider that a set of forecasts for matches that will be played

today (t) will be calculated using the most updated information from before today. Both the

values within β̂ and the design matrix X that were updated at time t − 1 will be used for

the forecasts made today. This is because the results for today (time t) are not yet known,

therefore the most recent information available refers to the values calculated for matches

before today (time t− 1).
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Another novel inclusion in the adaptive least squares calculation is theKt variable, known

as the Kalman gain. This value serves as a model hyperparameter that controls the degree to

which the existing design matrix features are adjusted when new information is introduced.

The Kalman gain Kt is influenced according to the values set for different signal-to-noise

ratios, oftentimes referred to as “forgetting filters,” which also serve as model hyperparam-

eters. These signal-to-noise ratios were implemented to discern between the natural seasons

that the ATP and WTA professional tours instill. Unfortunately for the players, there is not

much of an offseason in the sport of tennis. Unlike other professional sports, tennis profes-

sionals choose what tournaments they compete in19, so the “season” extends for nearly the

entire year. Depending on what tournaments players compete in, there is only a short 1-2

month break spanning most of November and December20. As such, matches completed in

more recent “seasons,” or years, were treated with higher signal-to-noise ratios than matches

from previous seasons. Hence, the further in the past some match metrics may be from, the

less impact they have on the model, and the more they are “forgotten.”

The values for the Kalman gain and the signal-to-noise ratios are somewhat intertwined;

if the signal-to-noise ratios were set to zero, the Kalman gain would trace the following pat-

tern, known as the “harmonic sequence”: 1, 1
2
, 1

3
, 1

4
, etc. Every subsequent set of match

statistics would have a sequentially smaller Kalman gain as the amount of already-present

data would continue to accumulate. It turns out that the signal-to-noise ratios were not set

to zero, rather they were optimally chosen to yield the best modeling results. If the existing

data does not include a large number of matches for some individual player, the match stats

from a recent match will influence the design matrix to a greater degree, and the value for

Kt will be higher. On the other hand, one newly-completed match for a player who has a

large number of matches already scraped and processed will not affect the design matrix as

much, and the value for Kt will be lower. In this sense, the contents of the design matrix are

19Player schedules are entirely made at their own discretion (assuming the presence of a sufficient ranking
to have unrestricted options).

20A top eight player will compete in the ATP /WTA Finals which are played in November, enjoy the short
offseason, and return to action in beginning-to-mid January in Australia.
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not simply player-specific rolling averages of match statistics, rather they are time-variant,

player-specific rolling averages that are ultimately influenced by the value of the Kalman

gain, Kt. As players compete in more and more matches, the higher volume of gathered

information stabilizes the model and the resulting forecasts improve. The manner in which

the values for the Kalman gain and the signal-to-noise ratios were chosen will be explored

further in the hyperparameter tuning section.

2.6.3 Logistic Mapping

The three adaptive least squares models each utilized different sets of features, yet all models

were constructed to output forecasted values for the outcome variable of interest, delta set.

At this point in the process, the adaptive least squares model successfully yielded delta set

forecasts for every match that had been scraped. The delta set forecasts were formatted as

a vector that shared the same index as the design matrix21. The next step involved mapping

these forecasted values, which included both positive and negative numbers, to probabilities

between 0 and 1. To do so, a time-variant sigmoid function was utilized, with the associated

formula shown below [Dan24]:

σ(z) =
1

1 + e−z
(2.12)

The resulting value of σ(z) above is a function of z, the output of the adaptive least

squares regression model which represents forecasted delta sets. σ(z) is therefore the fore-

casted probability of some given player winning their match. For a match that is being

played today, the adaptive least squares model uses the most recent information “before

today” to generate a delta set forecast. This forecast is then fed into the sigmoid function

shown above (as variable z), which maps the delta set value into a probability between 0 and

1. Because the adaptive least squares algorithm does not know what two rows are actually

21The common index made it quick and easy to pair the model results with the existing design matrix. The
42,000th element of the delta set vector corresponded to the results of the player-match unit of observation
residing within the 42,000th row of the design matrix (Fabio Fognini’s results from a match on Feb 14th
against Abedallah Shelbayh at the Manama Challenger).
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related, the probabilities of winning for two competitors more often than not will not sum

exactly to 1, but they will be close. Once the hyperparameters are tuned and more match

data is processed in the model, the sum of two competitors’ probabilities should get very

close to 1. This is a testament to the power of the algorithm: even though the model does

not know that the two rows corresponding to match opponents are related, the sum of the

two forecasted probabilities will get closer and closer to 1 in an independent manner.

2.6.4 Hyperparameter Tuning

The existence of hyperparameters was briefly alluded to in earlier sections. The value for

the Kalman gain and the numerous signal-to-noise ratios served as hyperparameters to the

adaptive least squares model. The logistic mapping process also involved a few hyperparam-

eters covering initial slope and intercept values along with associated “forgetting” factors. To

ensure that these parameters are defined so that the model generates as accurate of forecasts

as possible, a metaheuristic algorithm was created in R with the ultimate goal of minimizing

a performance metric of interest, the logistic cost. The logistic cost is a measurement of how

far the forecasted outcome falls with respect to the actual outcome [Dan24], which in this

case is the match outcome {0,1} with 0 signifying that the player lost the match and 1 sig-

nifying that the player won. To minimize the logistic cost, the vector of hyperparameters22

had random noise applied to each element and the model would be executed with the new

values. If the logistic cost was lower, the new vector of parameters was kept and the process

continued. If the logistic cost was the same or higher, the new vector values were thrown

out and the initial parameter vector once again had random noise applied to each element

and the model was executed.

In addition to the signal-to-noise and logistic hyperparameters, a regularization parame-

ter was also included within the adaptive least squares model. There is an appeal to having

22There were 12 total hyperparameters in this model: 8 for the adaptive least squares algorithm and 4 for
the logistic regression algorithm.

27



all of the model’s variables on similar scales, which is why player rankings and elo ratings

were both scaled down. As the variables included in the model have differing variances, the

process of scaled regularization penalizes the predictors evenly by adding a constant to the

diagonal terms of the L̂xx matrix. This addition helps to avoid oversuppressing the results

from specific predictor variables based on their scale. The presence of this scaled regularizer

afforded the option to not scale variables, but rank and elo rating were still scaled down for

good measure.

2.6.5 Modeling Application & Performance Comparison

It was of interest to compare multiple models with differing features in an attempt to uncover

those that were most influential in forecasting the delta set metric (and subsequent outcome)

of a tennis match. Three sets of features were constructed to serve as the inputs to three

separate models, with the resulting logistic costs and prediction accuracies serving as com-

parison metrics. The first, “all-encompassing” model (model 1) included all of the variables

listed in tables 2.2 and 2.3. This model involved throwing every scraped feature into the

design matrix, and its results served as a baseline for the other two models. Model 2 ana-

lyzed the results of model 1 and isolates the top features that possess the highest t-statistic

and lowest standard error with respect to the coefficients from the adaptive least squares

model. Oftentimes simpler models perform better, so model 2 was created to quantify any

differences. The final model, model 3, includes hand-picked features that the avid-tennis-fan

author expects to be the most influential, mostly based off of prior tennis knowledge acquired

from playing and watching the sport. The more-defining characteristic of model 3 is that it

does not feature player ranking and elo rating variables, as these two variables are widely

used when simple predictions of matches are made. Whoever is ranked higher is typically

the favorite to win, which is not a sentiment solely present in the sport of tennis. Excluding

rank and elo rating isolated the pure performance statistics and reduced the collective power

of the a priori variables, which would lead to interesting comparisons. Such comparisons

may assist in determining whether or not a model strictly leveraging filtered match statistics
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performs nearly as well as a model incorporating player rank and elo rating.

The table below displays the features implemented within model 2. To once again explore

model 1’s features, please refer back to the contents within tables 2.2 and 2.3.

a priori a posteriori (filtered)

Player Rank Player Rank

Elo Rating Elo Rating

Surface Type Winners

BestOf Unforced Errors

GamesPerSet Aces

Gender Double Faults

Tournament Level Tournament Level

Delta Game

Delta Set

Total Sets Won

Total Games Won

Table 2.5: Model 2 Variables

Compared to model 1, model 2 includes far fewer variables, keeping only the most “influ-

ential.” Model 3 is a subset of model 1, including hand-picked features but notably excluding

player rank and elo rating from both the a priori and filtered variable pools. Variables fea-

tured in model 3 are shown in table 2.6 below.
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a priori a posteriori (filtered)

BestOf First Serve Pct Aces

GamesPerSet First Serve Win Pct Double Faults

Tournament Level Service Pts Won Pct First Serve Return Pct

Surface Type Service Games Won Pct Return Games Won Pct

Gender Break Pt Conversion Pct Return Pts Won Pct

Break Pt Save Pct Winners

Total Games Won Unforced Errors

Total Sets Won Delta Set

Total Pts Won Pct Delta Game

Table 2.6: Model 3 Variables

The performances of the three respective models were quantified by analyzing logistic

costs, which measure how far the probability predictions stray from the actual match out-

comes {0,1}, and the accuracies of the forecasts with respect to actual match outcomes.

Variable importance was also documented for each model by observing the resulting β̂ mag-

nitudes and t-statistics.

2.7 Probability Output Interface

With the best model storming into the forefront due to its superior performance, its fore-

casting abilities were applied to tennis matches that had not yet occurred. An interface

was created that transmits three prompts to the user: requests for the names of two op-

posing players and the corresponding event at which they are competing. A program was

written to recognize each of the inputted player names and join the corresponding live rank-

ing and elo rating with each player as a priori information. The inputted event is joined

with the tournament lookup table, yielding more a priori information about the tournament.
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Once the inputted information is automatically prepped behind the scenes, it serves as

input to the model. The user does not experience any of these intermediate steps; the

only process component requiring any user activity is the initial insertion of player and

event names. The model outputs two rows of information, each containing the following:

player name, player rank, event name, probability of winning, forecasted delta sets, and the

forecasted winner23.

23This can be deduced from the winning probabilities. The player who has the higher probability of
winning is denoted as the model’s forecasted winner.
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CHAPTER 3

Results

3.1 Modeling

As new match statistics continued to be available on a daily basis, only matches played

between November 12th, 2022 and February 22nd, 2024 (inclusive) were included when

analyzing model performance. These date parameters resulted in 42,872 unique player-match

units of observation, further reduced to 34,034 after applying a mask to the dataframe. The

mask excluded the first 5,000 indexed player-matches and excluded players who had not yet

played more than three matches. This allowed for a period of “burn-in” which ensured that

forecasts were being made only on units of observation that were supported by a substantial

amount of data. Generating a forecast for a player who had previously only appeared once

or twice in the dataframe would not yield an accurate nor well-supported result. Once

the algorithms were completed, the distributions of the forecasted delta set outcomes were

visualized below in figure 3.1:
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Figure 3.1: Distribution of Forecasted Delta Set Values

The differences in the three distributions are slight, yet each is centered around zero. This

should be the case, as half of the units of observation should feature positive delta set forecasts

and the other half negative. Once the delta set values were mapped to probabilities via the

sigmoid function, the manner in which this process occurred could be analyzed. The true

match outcome for each unit of observation is also shown to reveal any meaningful patterns.

Figures 3.2, 3.3 and 3.4 once again display results from models 1, 2 and 3, respectively.
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Figure 3.2: Model 1 Sigmoid Curve

Figure 3.3: Model 2 Sigmoid Curve
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Figure 3.4: Model 3 Sigmoid Curve

It is once again difficult to visually isolate differences between the three sigmoid trans-

formation visualizations above. All three sigmoid curves are asymptotically bounded at 0

and 1 and each curve’s “S” shape is nearly identical to the others. The noticeable differences

are seen in the actual model forecasts, and are most obvious when looking at the tails of

the curve, which show that the resulting forecasts are indeed different with respect to input

features. Each model appears to have performed fairly well, as there is a distinct difference

in each plot in which forecasted winning probabilities above 0.50 oftentimes culminated in a

win, and probabilities below 0.50 oftentimes culminated in a loss. As well as the models can

perform, when delta set forecasts hover around 0 it becomes much more difficult to delineate

between a win and a loss. Matches yielding such forecasts could be considered “coin flips,”

where the two opponents are so close in terms of historical performance that there is no

strong favorite. This explains why wins and losses appear to be more inconsistent when

delta set forecasts hover close to 0. This aligns with how the model “should” work, because

more extreme forecasts originate from substantial differences in the data, which is the raw

representation of how each player performs on average. Forecasted probabilities closer to

0.50 are more or less coin flips, and the match could realistically culminate in either player
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winning.

Further visualization of the results includes analyzing the degree to which player rankings

affect the model forecasts. Since player rank serves as the standard method of comparing

two players, its inclusion (or exclusion) in the models was singled out. Figures 3.5, 3.6 and

3.7 below display the delta set forecasts with respect to the player rankings at the time of

the match. The true outcome is also shown.

Figure 3.5: Model 1 Forecasts and Outcomes by Player Rank
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Figure 3.6: Model 2 Forecasts and Outcomes by Player Rank

Figure 3.7: Model 3 Forecasts and Outcomes by Player Rank

All three visualizations look fairly similar, revealing the delta set forecasts getting slightly

smaller or more negative when the player ranking is lower (the larger the ranking number).

An interesting element is that model 3, generating the results shown in figure 3.7, does not
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include player ranking or elo ratings as featured variables when calculating forecasts. While

it is tough to discern any exact patterns from the three scatterplots, the fact that model 3’s

pattern of forecasts looks very similar to the others reveals that the strength of the models

is not solely due to the presence of rankings nor elo ratings. The raw match statistics tell

enough of a story on their own to construct a model that behaves in a comparable manner.

The visualizations thus far within this section have introduced general behaviors of the

three models, but do not reveal specific performance numbers. Upon construction of the three

models and completion of the appropriate hyperparameter tuning, the following performance

metrics in table 3.1 allowed for deeper comparison.

Logistic Cost
Match Forecast

Accuracy

Model 1 1.27377 63.54%

Model 2 1.27815 63.07%

Model 3 1.28629 62.48%

Table 3.1: Model Performance

Model 1, which served as the “all-encompassing” model featuring everything in tables 2.2

and 2.3, resulted in the best performance of the three models, correctly forecasting 63.54%

of the match outcomes while boasting the lowest logistic cost value at 1.27377. This process

once again called on the model to make two independent1 forecasts per match, one for each

player. Model 2 had reduced dimensionality by including just the best-performing features

from model 1. Ultimately model 2 performed slightly worse, possessing a logistic cost of

1.27815 and a forecasting accuracy of 63.07%. The third and final model included hand-

picked features that the author deemed influential, notably excluding player ranking and elo

rating as both a priori and filtered values. The purpose of this exclusion was to see to what

1While the forecasts were indeed independent, some information utilized in each set of two forecasts was
the same: namely, player stats for player A would be the same as opponent stats for player B. Still, the
model had no knowledge that two sequential player-match units of observation were related.
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degree knowledge about rankings and elo ratings affected model performance. Surprisingly,

the exclusion of these two variables did not drastically affect performance. Model 3 did have

the highest logistic cost and the lowest forecasting accuracy of the three models, 1.28629 and

62.48%, respectively, but these numbers still well outperformed expectations.

It was of interest to compare the model results with match prediction accuracies when

the higher-ranked player is predicted to win. If a player ranked number 9 in the world

were opposing a player ranked 62, the former player would be the predicted winner. If the

predictions based solely on rank were compared to the actual match outcomes, this method

of predicting would result in an accuracy of 61.72%. The inclusion of the filtered match

statistics ultimately culminated in a nearly 2% improvement in match forecasting accuracy

compared to simply choosing a winner based on ranking. This may appear to be a marginal

difference, but even the slightest of differences can be incredibly valuable when it comes to

the accuracy of future forecasting. Future extensions to this project that have the potential

to bolster model forecasting accuracy will be described in detail in later sections.

When it comes to analyzing feature importance within the models, the regression slopes,

t-statistics and standard error values are of interest. Regression results for model 1 are

displayed in table 3.2 on the following pages. There are four variable prefixes in the first

column: PS, OPS, PA and OPA. PS refers to “player scored” or the player’s own metrics.

OPS refers to “opposing player scored” or the player’s opponent’s metrics. PA refers to

“player against” or what metrics the player “gives up.” Finally, OPA refers to “opposing

player against” or the metrics that the opponent “gives up.”
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Table 3.2: Model 1 Regression Results

Variable β̂ T-Statistic Standard Error

PS GamesPerSet 0.0008601818 0.048785668 0.017631854

PS BestOf 0.0038955141 0.115364905 0.033766890

PS Player Rank -0.0328108885 -1.297297501 0.025291723

PS 1st Serve % 0.0397011077 0.248920581 0.159493070

PS Total Games Won 0.0031332959 0.361743060 0.008661661

PS Total Sets Won 0.0241245186 0.300535613 0.080271747

PS Match Won -0.0057780851 -0.032002278 0.180552307

PS 2nd Serve Win % 0.1448315951 0.707888077 0.204596743

PS Tournament Level 0.0404251380 2.884943094 0.014012456

PS Elo Rating 0.0361227163 0.333992750 0.108154193

PS Break Point Save % -0.0028517821 -0.016844176 0.169303740

PS 2nd Serve Return % 0.1316077029 0.656717864 0.200402197

PS Total Points Won % 0.1176586817 0.562149788 0.209301301

PS 1st Serve Win % 0.0976900138 0.647181159 0.150946937

PS Service Games Won % 0.0744886148 0.536098241 0.138945829

PS Aces 0.0052599981 0.499632968 0.010527724

PS Double Faults 0.0040422626 0.255944152 0.015793534

PS 1st Serve Return % 0.2103627062 0.673000456 0.312574389

PS Break Point Conversion % -0.1683020729 -0.811356155 0.207433039

PS Return Games Won % 0.2053492751 0.636798407 0.322471402

PS Winners 0.0065043938 1.434960967 0.004532802

PS Unforced Errors -0.0029576110 -0.653777707 0.004523879

PS Service Points Won % 0.1096440752 0.643746974 0.170321694

PS Return Points Won % 0.1698042259 0.645249028 0.263160762

PS Delta Set 0.2004948521 1.360913014 0.147323782

Continued on next page
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Table 3.2 – continued from previous page

Variable β̂ T-Statistic Standard Error

PS Delta Game 0.1022104003 2.347488642 0.043540317

PS Gender Female -0.1955252658 -1.012845549 0.193045491

PS Gender Male 0.0581407118 0.508700738 0.114292564

PS Surface Carpet 3.7651481181 0.989196236 3.806270161

PS Surface Clay -0.0498788786 -0.281367922 0.177272798

PS Surface Grass 0.3377566032 0.583843964 0.578504915

PS Surface Hard -0.0017928593 -0.012650219 0.141725549

OPS GamesPerSet -0.0022262275 -0.123663266 0.018002334

OPS BestOf -0.0068574361 -0.199167332 0.034430526

OPS Player Rank 0.0553874670 2.249075504 0.024626771

OPS 1st Serve % -0.0414790781 -0.254772174 0.162808510

OPS Total Games Won -0.0040896978 -0.463682834 0.008820033

OPS Total Sets Won -0.0299787588 -0.367305832 0.081617976

OPS Match Won -0.0238825783 -0.130105178 0.183563626

OPS 2nd Serve Win % -0.1500558333 -0.718609501 0.208814152

OPS Tournament Level -0.0395605175 -2.787256429 0.014193354

OPS Elo Rating 0.0004157821 0.005471814 0.075986157

OPS Break Point Save % 0.0185465394 0.107459151 0.172591531

OPS 2nd Serve Return % -0.1094100553 -0.534595832 0.204659387

OPS Total Points Won % -0.1086399178 -0.508442060 0.213672169

OPS 1st Serve Win % -0.0889502132 -0.577624205 0.153993223

OPS Service Games Won % -0.0742277602 -0.523826147 0.141703045

OPS Aces -0.0074452072 -0.695619454 0.010702989

OPS Double Faults -0.0037941390 -0.234756210 0.016162039

OPS 1st Serve Return % -0.1969273041 -0.616602626 0.319374741

Continued on next page
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Table 3.2 – continued from previous page

Variable β̂ T-Statistic Standard Error

OPS Break Point Conversion % 0.1609324624 0.760348635 0.211656147

OPS Return Games Won % -0.1517801889 -0.460310811 0.329734139

OPS Winners -0.0047083434 -1.028991436 0.004575688

OPS Unforced Errors 0.0026604459 0.579214903 0.004593193

OPS Service Points Won % -0.1051175144 -0.604956112 0.173760563

OPS Return Points Won % -0.1524606937 -0.567041568 0.268870401

OPS Delta Set -0.2067340260 -1.388130993 0.148929767

OPS Delta Game -0.1076487869 -2.445553018 0.044018178

OPS Gender Female 0.1826940822 0.924401255 0.197635043

OPS Gender Male -0.0648269911 -0.556210942 0.116551089

OPS Surface Carpet -2.6164447193 -0.671558082 3.896081052

OPS Surface Clay 0.0077221370 0.042553396 0.181469345

OPS Surface Grass -0.3990896879 -0.682397919 0.584834268

OPS Surface Hard 0.0017426974 0.012099790 0.144027083

PA GamesPerSet 0.0009835349 0.053485892 0.018388680

PA BestOf 0.0054593907 0.154233942 0.035396817

PA Player Rank -0.0594243496 -2.116297827 0.028079389

PA 1st Serve % 0.0746809158 0.423968774 0.176147208

PA Total Games Won 0.0021862987 0.229858002 0.009511519

PA Total Sets Won 0.0230132456 0.243320446 0.094579991

PA Match Won 0.1927947474 0.879462689 0.219218791

PA 2nd Serve Win % 0.0480992569 0.217804724 0.220836610

PA Tournament Level 0.0509104984 3.350309945 0.015195758

PA Elo Rating 0.2605274018 2.982772465 0.087344041

PA Break Point Save % 0.1880715222 1.028148118 0.182922595

Continued on next page
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Table 3.2 – continued from previous page

Variable β̂ T-Statistic Standard Error

PA 2nd Serve Return % 0.0402302153 0.187877049 0.214130548

PA Total Points Won % 0.0402119989 0.179417649 0.224125102

PA 1st Serve Win % 0.0358498445 0.221808485 0.161625217

PA Service Games Won % 0.0410724597 0.272172916 0.150905756

PA Aces -0.0070121228 -0.516042090 0.013588277

PA Double Faults -0.0302850110 -1.150578058 0.026321561

PA 1st Serve Return % -0.0823247253 -0.246804942 0.333561899

PA Break Point Conversion % 0.1326984884 0.588125244 0.225629642

PA Return Games Won % -0.0253272385 -0.069503063 0.364404640

PA Winners 0.0032025829 0.741520919 0.004318938

PA Unforced Errors -0.0012032168 -0.254671004 0.004724593

PA Service Points Won % 0.0385837378 0.211934598 0.182054927

PA Return Points Won % -0.0009563398 -0.003372403 0.283578131

PA Delta Set 0.0372189286 0.226642642 0.164218561

PA Delta Game -0.0365911361 -0.759259877 0.048193164

PA Gender Female -0.2053378252 -1.017671313 0.201772245

PA Gender Male 0.0619568591 0.519875116 0.119176427

PA Surface Carpet -7.3642841971 -1.178400511 6.249389856

PA Surface Clay -0.0502470096 -0.272740570 0.184230053

PA Surface Grass -0.2439309019 -0.382788450 0.637247289

PA Surface Hard 0.0198863835 0.128806585 0.154389495

OPA GamesPerSet -0.0038222647 -0.203590775 0.018774253

OPA BestOf -0.0107260548 -0.297292682 0.036079108

OPA Player Rank 0.0710193802 2.451638883 0.028968124

OPA 1st Serve % -0.0829994547 -0.461149847 0.179983698

Continued on next page
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Table 3.2 – continued from previous page

Variable β̂ T-Statistic Standard Error

OPA Total Games Won -0.0040065478 -0.412939595 0.009702503

OPA Total Sets Won -0.0385823028 -0.399165982 0.096657292

OPA Match Won -0.2485077656 -1.108744727 0.224134338

OPA 2nd Serve Win % -0.0770101231 -0.341449894 0.225538577

OPA Tournament Level -0.0491830422 -3.197565075 0.015381405

OPA Elo Rating -0.2394587125 -2.685051805 0.089182157

OPA Break Point Save % -0.1933028620 -1.036450939 0.186504594

OPA 2nd Serve Return % -0.0427641319 -0.195309358 0.218955878

OPA Total Points Won % -0.0516496850 -0.225469112 0.229076545

OPA 1st Serve Win % -0.0422017140 -0.255650584 0.165075758

OPA Service Games Won % -0.0531349568 -0.344729686 0.154135135

OPA Aces 0.0038453375 0.277111454 0.013876502

OPA Double Faults 0.0321199770 1.195281521 0.026872311

OPA 1st Serve Return % 0.0451927362 0.132400310 0.341334068

OPA Break Point Conversion % -0.1505315849 -0.653593314 0.230313838

OPA Return Games Won % 0.0361232436 0.096759571 0.373329928

OPA Winners -0.0029261157 -0.670237953 0.004365786

OPA Unforced Errors 0.0008787020 0.183379951 0.004791702

OPA Service Points Won % -0.0494847918 -0.266121199 0.185948328

OPA Return Points Won % -0.0092569039 -0.031903746 0.290151004

OPA Delta Set -0.0258590245 -0.155881634 0.165888846

OPA Delta Game 0.0442349721 0.907285581 0.048755291

OPA Gender Female 0.1751544973 0.846428391 0.206933627

OPA Gender Male -0.0752224182 -0.618221553 0.121675503

OPA Surface Carpet 5.9623914866 0.925842360 6.439964018

Continued on next page
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Table 3.2 – continued from previous page

Variable β̂ T-Statistic Standard Error

OPA Surface Clay 0.0476734415 0.253885193 0.187775588

OPA Surface Grass 0.2085253537 0.324275290 0.643050396

OPA Surface Hard -0.0627696732 -0.398356033 0.157571790

By analyzing the columns corresponding to the β̂ vector values, t-statistics and standard

errors, the influence of each variable on the delta set forecast can be quantified. Multiplying

the number of features by four yields a lot of numbers to sift through, but there are interest-

ing results to glean. Player rank, tournament level, winners, delta set and delta game appear

to be the most influential variables, possessing t-statistic values greater than 1 or less than -1

paired with relatively low standard errors (calculated via dividing the regression coefficient

by the t-statistic). Simply looking at the regression coefficients can be misleading, with the

resulting β̂ values for the carpet surface dummy variable serving as the perfect example.

These coefficients are noticeably larger than the rest because the dataset only contains one

tournament that was played on carpet. The standard error for the variable is extremely

high, so that result is not considered.

It can be nebulous when interpreting the coefficients for PA and OPA-prefixed variables,

as their effects on delta set forecasts can be difficult to definitively conclude. To provide an

example of coefficient interpretation, the focus will narrow to the “winners” variable, as the

regression results indicate that it is one of the most influential variables that was included

and it is fairly simple to interpret. The sign of the regression coefficient is positive for both

PS Winners and PA Winners, while the sign is negative for OPS Winners and OPA Winners.

American Coco Gauff will serve as an example player to assist in providing a deeper expla-

nation. Coco’s forecasted performance should be better (higher forecasted delta set value)

if she hits more winners (PS prefix) and worse if her opponent hits more winners (OPS).
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This is consistent with the regression coefficient signs. One may also imagine that Coco’s

performance would be better if she allowed fewer winners (PA), but the coefficient for PA

Winners is slightly positive. It would also make sense for Coco’s performance to improve if

her opponent allowed more winners (OPA), but the coefficient for OPA Winners is slightly

negative. PA Winners and OPA Winners do possess t-statistics closer to zero, so they do

not appear to be quite as influential as their PS and OPS counterparts.

It is not necessarily surprising for the interpretations of the PS and OPS-prefixed variable

coefficients to be sharper, as these variables directly encompass player and opponent perfor-

mance. PA and OPA also fulfill the same goal, but in a much noisier and more circuitous

fashion. None of the raw tennis match statistics have any absolute relationship with the

delta set outcome. As much as the winners variable may seem to align with ultimate match

outcomes, a high number of winners may accompany a risky playing style and a high number

of unforced errors. Similarly, a high first serve percentage may indicate that the player is not

going for a lot on their first serve, reducing its effectiveness. As clear cut as some of these

relationships may seem, the underlying connections are much more noisy. This fortifies the

impressive nature of the model 1 accuracy.

Further analysis in regard to the inner-workings of the models allowed for the fluctuating

nature of the Kalman gain to be visualized. The unique Kalman gain values for the one

female and one male player who participated in the highest number of matches between Nov

12, 2022 and Feb 22, 2024 were isolated. Time series visualizations in figures 3.8 and 3.9

below show the manner in which the Kalman gain changed match-by-match for the two most

active players in the specified time range, Iga Swiatek and Flavio Cobolli.
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Figure 3.8: Kalman Gain Time Series: Iga Swiatek

Figure 3.9: Kalman Gain Time Series: Flavio Cobolli

As was described in the methodology section, more data results in a smaller Kalman

gain value. As Iga and Flavio played more and more matches, the dataset captured the

resulting match statistics and in turn the filtered feature values encapsulated a higher vol-
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ume of historical data. Every new match resulted in a decreased value for the Kalman gain;

one new data point is much more influential when there are only two data points present

rather than fifteen. It reached a point for both players, around April 2023 after roughly 20

or so matches, that new match statistics no longer affected the filtered values or the gain

as much because the data was already plentiful. The decreasing rate of the Kalman gain,

Kt from equations 2.10 and 2.11, slowed and the differences between the new data and the

existing data were not as emphasized. The Kalman gain values for both players ultimately

settled around 0.03-0.04, that is until the calendar turned over and a new tennis season began.

When the new year (new season)2of 2024 began, the Kalman gain values for both Iga

and Flavio just about doubled. The degree to which the gains were affected by the new year

was controlled by tuned signal-to-noise hyperparameters. Matches played in the new year

were weighted a little greater due to recency, as different years were controlled by different

hyperparameters. It is intuitive that forecasts for matches played in January and February

2024 should be affected more by results from other matches played in 2024 rather than

results from the previous year. As Iga and Flavio continued to complete matches in 2024,

the Kalman gain once again continued its slow decline.

3.2 Forecasting Interface

Model 1 was used to generate forecasts for any user-inputted matchup once the program was

provided with two player names and the name of an event. These three pieces of information

culminate in two forecasted probabilities of winning, one for each opposing player. As men-

tioned previously, the generated winning probabilities for two opposing players oftentimes do

not exactly add up to 1. Each row of information (unit of observation being player match)

will feature the four filtered values for each variable: player metric, opponent metric, metric

allowed by player, and metric allowed by opponent. These values are used in the model, for

2“Year” and “season” are interchangeable throughout this paragraph. It was determined that the calendar
turning over to a new year best exhibits the tennis season starting anew.
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each row, not the information from the row of the opposing player. An interaction with the

interface script is shown below in 3.10:

Figure 3.10: Match Forecasting Interface

For the first match that was run through the model shown above, the forecast for Karen

Khachanov will incorporate Jakub Mensik’s metrics for “opponent metrics,” and vice-versa.

Even with this data overlap the two forecasts are still made separately. In each match above

the sums of the winning probabilities are very close to 1, which is testament to the power

of the forecasting model. The Elina Svitolina vs. Maria Sakkari mock match at WTA Abu

Dhabi features forecasted probabilities summing to about 0.98, which is most likely due to

a small volume of metrics for one of the two players. Still, the model made a firm forecast
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and chose the lower-ranked Svitolina as the forecasted winner.
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CHAPTER 4

Conclusion

4.1 Overview

While the presence of player rank and elo rating resulted in a model featuring a slightly better

match forecasting accuracy, the model strictly including past match statistics performed well

above expectation. Since metrics such as player rank and elo rating exist as comprehensive

benchmarks to quantify overall performance, the strong model results in the absence of such

variables gives credence to both the historical match statistics as well as the method of

Kalman filtering as effective model inclusions. The filtering process allowed for a “rolling

average” of the statistical metrics for every professional player in the dataset. Time series

visualizations for the Kalman gain revealed the behaviors of some model hyperparameters,

which affected how the forecasts were generated and how the effect of time was quantified.

The time-filtered information performed strikingly well in terms of forecasting accuracy even

without the inclusion of the aforementioned rank and elo variables. Models 1 and 2 featured

a slew of filtered match statistics while also including variables such as player rank and elo

rating. The models’ forecasting accuracies were 63.54% and 63.07%, respectively. Model 3

featured a lot of the same filtered match statistics but excluded rank and elo rating, and

possessed a forecasting accurary of 62.48%. All three constructed models performed better

than an algorithm that simply chose the player with the better ranking as the winner. This

algorithm had a prediction accuracy of 61.72%, which is nearly 2% below the forecasting

benchmark achieved by model 1.

Far more information in regard to individual players, tournament settings, situational

variables and past occurrences could be implemented in the future to improve tennis match
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forecasting accuracy. As more data is collected, forecasts generated by the current models

should continue to improve. The limitations of this project will be described in detail along

with ideas for future extensions that will be developed within this project in the future.

4.2 Limitations

A notable limitation of this project involved allocating time to deal with incorrect source

data. After the scraping process was completed, it was uncovered on a few occassions that

the information online was incorrect. This led to double and triple-checks to ensure that

the scraped information was correct, but it was difficult to isolate the infrequent instances1,

especially as the number of scraped matches skyrocketed into the tens of thousands. These

situations were only brought to light after visual inspections of the data and were dealt with

by replacing the entire row of match statistics with NAs, resulting in the unit of observation

not getting used in modeling. It was unfortunate to lose units of observation in this manner,

but the instances were thankfully not common. An additional hurdle was alluded to previ-

ously and pertains to the HTML structure of the ATP website. This website was overhauled

a couple of times throughout the duration of this project, making it necessary to restructure

the scraping algorithm.

It is an imperfect process to instill arbitrary caps on some variables when determining

whether or not they should be included in the data. For example, it is not uncommon for a

player to retire during a match due to injury. The statistics associated with such a curtailed

match are skewed in a sense, as the a priori variables may claim that the match was best of

3 sets, with 6 games per set. To try to combat this inconsistency, it was arbitrarily chosen

that matches must go at least ten total games for the corresponding statistics to be used in

the model. It is hard to know how best to deal with rare-but-harmful units of observation

like this, but the safest method involves either instilling some sort of threshold or replacing

1Such inaccuracies included percentages well over 100%, the number of first serves attempted in a 3-set
match being less than 10, etc.
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the data with NAs altogether. This project required daily attention, whether it be to scrape

match statistics, ensure that the data integrity was upheld, or manually update lookup tables.

This does not yet exist as a self-sufficient, fully automated project, yet it can absolutely get

to that point one day and require minimal oversight. As tedious as some steps of this project

could be, the start-to-finish process is efficient. There still remain opportunities for further

optimization and automation, especially once the extensions described below are added.

4.3 Future Work

With a model capable of forecasting the future with a fairly strong degree of accuracy, a

logical next step would be to apply the model to upcoming tennis matches and assess how

well it can perform on a large scale. The outputted probabilities could be manipulated to

create a variable such as “forecast strength” which could be a ratio of some player’s winning

probability divided by that of their opponent. This value could possibly be useful if the

model were ever leveraged to bet on upcoming matches. If the forecast strength exceeded

some amount, it could be compared to the opposing players’ rankings to uncover betting

value and an automated process could alert the user of a high-value bet, or even execute the

wager automatically. To potentially improve performance, the delta games variable could

be implemented alongside delta sets as a second output. Forecasting delta games may be

better suited given the match statistics that were scraped, as strong serving metrics paired

with poor return metrics could lead to a flat delta games forecast. Big servers who struggle

with returning serve to a degree (John Isner, Hubert Hurkacz, etc.) typically play a high

number of tiebreakers, and a tiebreaker set results in a delta games outcome of just +1 or

-1. Numerous additional variables could be scraped or created from existing variables, such

as how active each player has been over a recent period of time2, travel time getting to the

tournament, distance from home countries, head-to-head records, career statistics and more.

Regardless of the additional model inputs that may be chosen in the future, the current

array of features is sufficient in creating a successful model. The ultimate performance will

2This would (imperfectly) quantify energy level/exhaustion, which is hard to do.
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continue to improve as the model is fed with more and more match statistics, the production

of which will never cease.

One final future inclusion to this project involves the ability to forecast entire tournaments

once the draw matchups from professional tournaments are made public. The makeup of

the draw could be scraped and a program could run each of the possible matchups through

the forecasting model, generating probabilities of reaching each round of the tournament for

each player. These improvements could be applied to the forecasting interface, which could

be available for public use online in a more user-friendly environment.
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